C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Computer Oriented Numerical Methods

Subject Code : 4CS0	2ICO1	Branch: B.Sc.I.T.	
Semester : 2	Date : 20/04/2019	Time : 02:30 To 05:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) The Gauss elimination method in which the set of equations are transformed into triangular form.(a) True (b) False
- b) The convergence in the Gauss Seidel method is faster than Gauss Jacobi method.

(A) True (B) False

- c) Newton forward interpolation formula is used mainly to interpolate the values of function f(x) near the middle of a tabular value.
 (A) True (B) False
- **d**) The method of false position has _____ convergence than the bisection method.

(A) faster (B) lower (C) equal (D) None of these

e) Iterative formula for finding the square root of N by Newton-Raphson method is

(A)
$$x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right) (i = 0, 1, 2,)$$

(B) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right) (i = 0, 1, 2,)$
(C) $x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right) (i = 0, 1, 2,)$

(C) $x_{i+1} = x_i (2 - Nx_i)$ (*i* = 0,1,2,....) (D) None of these

- f) The number of strips required in Simpson's 3/8th rule is a multiple of
 (A) 1 (B) 2 (C) 3 (D) 6
- g) While evaluating a definite integral by Trapezoidal rule, the accuracy can be increased by taking
 (A) large number of sub___intervals_(B) small number of sub___intervals_(B)

(A) large number of sub – intervals (B) small number of sub – intervals

- (C) odd number of sub intervals (D) none of these
- h) A self-complemented, distributive lattice is called(A) Boolean algebra (B) Modular lattice (C) Bounded lattice

(D) Complete lattice

- i) If B is a Boolean Algebra, then which of the following is true
 - (A) B is a finite but not complemented lattice.
 - (B) B is a finite, complemented and distributive lattice
 - (C) B is a finite, distributive but not complemented lattice.
 - (D) B is not distributive lattice.
- j) A graph with one vertex and no edges is:
 - (A) multigraph (B) digraph (C) isolated graph (D) trivial graph
- k) A graph is tree if and only if
 (A) Is planar (B) Contains a circuit (C) Is minimally
 (D) Is completely connected
- A non-empty finite poset is
 (A) at most one greatest element
 (B) at most one least element
 (C) either (A) or (B)
 (D) both (A) and (B)
- m) A relation that is reflexive, anti-symmetric and transitive is a
 (A) function (B) equivalence relation (C) partial order
 - (D) None of these
- **n**) Hasse diagram are drawn for
 - (A) Partially ordered sets (B) Lattices (C) Boolean algebra
 - (D) none of these

Attempt any four questions from Q-2 to Q-8

~ •			
Q-2		Attempt all questions	(14)
	a)	One real root of the equation $e^{-x} - x = 0$ lies between 0 and 1. Find the	(5)
		root using Bisection method.	
	b)	Find all the maxterms of a Boolean Algebra with three variables	(5)
		$X_{1}, X_{2}, X_{3}.$	
	c)	Given the table of values as	(4)
		x 0 1 2 3	
		y(x) 0 2 8 27	
		Find $y(2.5)$ using Lagrange's Interpolation formula.	
0.3		Attempt all questions	(14)
Q-3	a)	Given the table of values as	(14)
	a)	x = 20 = 225 = 250 = 275 = 30	(\mathbf{J})
		x 2.0 2.25 2.50 2.75 5.0 y(r) 9.00 10.06 11.25 12.56 14.00	
		Find $y(2.25)$ using Newton's forward difference formula	
	• `	Find $y(2.55)$ using Newton's forward difference formula.	
	b)	Find indegree and outdegree of each node from the following adjacency	(5)
		matrix $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and draw its digraph.	
	`		
	c)	Solve the following system of equations by Gauss Elimination Method:	(4)
		5x-2y+3z = 18, $x + 7y-3z = -22$, $2x - y + 6z = 22$	
Q-4		Attempt all questions	(14)
	a)	Solve the following system of equations by Gauss-Seidal method.	(5)
		$10x_1 + x_2 + 2x_3 = 44$, $2x_1 + 10x_2 + x_3 = 51$, $x_1 + 2x_2 + 10x_3 = 61$	

b) For the following tree

Q-5

Q-6

Q-7

- (i) Give all the leaf and branch nodes.
- (ii) Give all the sub-tree with roots which are nodes at level 1.
- (iii) Degree of nodes v_0 , v_5 , v_7 .

c)	Using Newton-Raphson method, find the root the equation $f(x) = \sin x + \cos x$.	
a)	Attempt all questions Using definition of complement of an element find complement of each element of lattice $\langle S_{10}, \text{ GCD}, \text{LCM}, 1, 10 \rangle$	(14) (5)
b)	Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ considering five sub-intervals.	(5)
c)	Draw the graph where $V = \{1, 2, 3, 4\}$ and $E = \{e_1, e_2, e_3, e_4, e_5\}$,	(4)
	$e_1 = e_5 = (1,2)$, $e_2 = (4,3)$, $e_4 = (2,4)$ and $e_3 = (1,3)$.	
	Attempt all questions	(14)
a)	Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.	(5)
b)	Write the following Boolean expressions in an equivalent sum of products canonical form in three variables x_1 , x_2 , x_3 .	(5)
	(i) $x_1 \oplus (x_2 * x'_3)$ (ii) $(x_1 \oplus x_2) * x_3$	
c)	Find Meet-irreducible elements and antiatoms for the lattices $\langle S_{60}, \mathbf{D} \rangle$	(4)
	Attempt all questions	(14)
a)	Given $\frac{dy}{dx} = xy$ with $y(1) = 5$. Using Euler's method find the solution	(5)
	correct to three decimal position in the interval [1,1.5] taking step size	
	h = 0.1.	
b)	Find all node base of following digraph shown in figure.	(5)

c)	Draw all non-isomorphic graph on 2 and 3 vertices. Attempt all questions	(4) (14)
a)	Find the solution of the following differential equation $\frac{dy}{dx} = x + y$ using	(5)
	Runge-Kutta second order method for $x = 0.1, 0.2, 0.3$ and 0.4. Given	
	that $y = 1$ when $x = 0$.	
b)	Draw Hasse diagram for the poset $\langle S_{210}, \mathbf{D} \rangle$; where $a\mathbf{D}b$ means a	(5)
	divides b.	

c) If \Box is the set of all positive integers and relation D on \Box defined by (4) $a, b \in \Box, a\mathbf{D}b$ if "a divides b" then show that $\langle \Box, \mathbf{D} \rangle$ is a poset.

Q-8